Left Termination of the query pattern
sublist_in_2(a, g)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).
Queries:
sublist(a,g).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist_in: (f,b)
append_in: (f,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U2_ag(x1, x2, x3) = U2_ag(x3)
append_in_aag(x1, x2, x3) = append_in_aag(x3)
append_out_aag(x1, x2, x3) = append_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5)
U3_ag(x1, x2, x3) = U3_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U2_ag(x1, x2, x3) = U2_ag(x3)
append_in_aag(x1, x2, x3) = append_in_aag(x3)
append_out_aag(x1, x2, x3) = append_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5)
U3_ag(x1, x2, x3) = U3_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST_IN_AG(X, Y) → U2_AG(X, Y, append_in_aag(P, X1, Y))
SUBLIST_IN_AG(X, Y) → APPEND_IN_AAG(P, X1, Y)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U1_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U2_AG(X, Y, append_out_aag(P, X1, Y)) → U3_AG(X, Y, append_in_aag(X2, X, P))
U2_AG(X, Y, append_out_aag(P, X1, Y)) → APPEND_IN_AAG(X2, X, P)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U2_ag(x1, x2, x3) = U2_ag(x3)
append_in_aag(x1, x2, x3) = append_in_aag(x3)
append_out_aag(x1, x2, x3) = append_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5)
U3_ag(x1, x2, x3) = U3_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
APPEND_IN_AAG(x1, x2, x3) = APPEND_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5) = U1_AAG(x1, x5)
U3_AG(x1, x2, x3) = U3_AG(x3)
SUBLIST_IN_AG(x1, x2) = SUBLIST_IN_AG(x2)
U2_AG(x1, x2, x3) = U2_AG(x3)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST_IN_AG(X, Y) → U2_AG(X, Y, append_in_aag(P, X1, Y))
SUBLIST_IN_AG(X, Y) → APPEND_IN_AAG(P, X1, Y)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U1_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U2_AG(X, Y, append_out_aag(P, X1, Y)) → U3_AG(X, Y, append_in_aag(X2, X, P))
U2_AG(X, Y, append_out_aag(P, X1, Y)) → APPEND_IN_AAG(X2, X, P)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U2_ag(x1, x2, x3) = U2_ag(x3)
append_in_aag(x1, x2, x3) = append_in_aag(x3)
append_out_aag(x1, x2, x3) = append_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5)
U3_ag(x1, x2, x3) = U3_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
APPEND_IN_AAG(x1, x2, x3) = APPEND_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5) = U1_AAG(x1, x5)
U3_AG(x1, x2, x3) = U3_AG(x3)
SUBLIST_IN_AG(x1, x2) = SUBLIST_IN_AG(x2)
U2_AG(x1, x2, x3) = U2_AG(x3)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 5 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(x1, x2) = sublist_in_ag(x2)
U2_ag(x1, x2, x3) = U2_ag(x3)
append_in_aag(x1, x2, x3) = append_in_aag(x3)
append_out_aag(x1, x2, x3) = append_out_aag(x1, x2)
.(x1, x2) = .(x1, x2)
U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5)
U3_ag(x1, x2, x3) = U3_ag(x3)
sublist_out_ag(x1, x2) = sublist_out_ag(x1)
APPEND_IN_AAG(x1, x2, x3) = APPEND_IN_AAG(x3)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2) = .(x1, x2)
APPEND_IN_AAG(x1, x2, x3) = APPEND_IN_AAG(x3)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)
The graph contains the following edges 1 > 1